Recommended Cutting Conditions

Cutting Speed

	Work Mater	ial	Grade	VC (SFM)		
Ρ	Mild Steel	≤180HB	MP6120	GLA	655(490-720)	
	Carbon Steel 180–280HB Alloy Steel		MP6120	GLA	655(490-720)	
N		Si<5%	LC15TF	GL	3280 (655—9840)	
	Aluminum Alloy		TF15	GL	3280 (655—9840)	
		5%≤Si≤10% Si>10%	LC15TF	GL	3280 (655—9840)	
S	Titanium Alloy	_	MP9120	GLA	130 (100—195)	

(inch)

(inch)

Feed per Tooth

									(IIICII)
							Feed per	Tooth (IPT)	
	Work Mate	rial	Breaker	ae	ар		Cutting Edge	Diameter DC	
						1.250"	1.500"	2.000"-3.000"	4.000",5.000"
						32mm	40mm	50-80mm	100,125mm
P)				≤ .197	≤ .007	≤ .008	≤.008	≤ .008
				≤ .25 DC	≤ .394	≤ .006	≤ .007	≤ .007	≤ .007
				≤ .25 DC	≤ .591	≤ .005	≤ .006	≤ .006	≤ .006
					≤ .987	≤ .004	≤ .005	≤ .005	—
					≤ .197	≤ .007	≤ .008	≤ .008	≤ .008
				≤ .5 DC	≤ .394	≤ .006	≤ .007	≤ .007	≤ .007
	Mild Steel	≤180HB	GLA	5 DC	≤ .591	≤ .005	≤ .006	≤ .006	≤ .006
					≤ .987	≤ .004	≤ .005	≤ .005	—
					≤ .197	≤ .006	≤ .006	≤ .007	≤ .007
				≤ .75 DC	≤ .394	≤ .005	≤ .005	≤ .006	≤ .006
					≤ .591	≤ .004	≤ .004	≤ .005	≤ .005
				DC (Slot)	≤ .197	≤ .005	≤ .006	≤ .007	≤ .007
				DC (3101)	≤ .394	≤ .004	≤ .005	≤ .006	≤ .006
					≤ .197	≤ .007	≤ .008	≤ .008	≤ .008
				≤ .25 DC	≤ .394	≤ .006	≤ .007	≤ .007	≤ .007
				<u></u>	≤ .591	≤ .005	≤ .006	≤ .006	≤ .006
					≤ .987	≤ .004	≤ .005	≤ .005	—
					≤ .197	≤ .007	≤ .008	≤ .008	≤ .008
	Carbon Steel			≤ .5 DC	≤ .394	≤ .006	≤ .007	≤ .007	≤ .007
	Alloy Steel	180-280HB	GLA		≤ .591	≤ .005	≤ .006	≤ .006	≤ .006
	7 moy oteen				≤ .987	≤ .004	≤ .005	≤ .005	—
					≤ .197	≤ .006	≤ .006	≤ .007	≤ .007
				≤ .75 DC	≤ .394	≤ .005	≤ .005	≤ .006	≤ .006
					≤ .591	≤ .004	≤ .004	≤ .005	≤ .005
				DC (Slot)	≤ .197	≤ .005	≤ .006	≤ .007	≤ .007
					≤ .394	≤ .004	≤ .005	≤ .006	≤ .006

(Note 1) The above cutting conditions are determined based on high workpiece and machine rigidity, where no vibration occurred. If vibrations occur make adjustments according to the machining conditions.

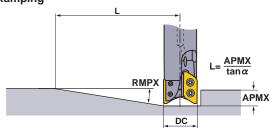
(Note 2) Note, vibrations may occur in the following conditions.

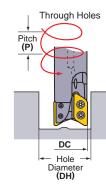
• When using long tool overhang.

• When the workpiece has poor clamping rigidity or when the machine rigidity or workpiece rigidity is low, vibrations can occur easily, if so, reduce the cutting conditions.

• When pocket machining corner radii.

Feed per Tooth


						Feed per	Tooth (IPT)	
Work Material		Breaker	ae	ар		Cutting Edge	e Diameter DC	·
				-	1.250"	1.500"	2.000"-3.000"	4.000",5.000
 					32mm	40mm	50-80mm	100,125mm
				≤ .197	≤ .014	≤ .016	≤ .016	≤ .016
			≤ .25 DC	≤ .394	≤ .012	≤ .014	≤ .014	≤ .014
				≤ .591	≤ .010	≤ .012	≤ .012	≤ .012
				≤ .987	≤ .008	≤ .010	≤ .010	≤ .010
				≤ .197	≤ .014	≤ .014	≤ .016	≤ .016
			≤ .5 DC	≤ .394	≤ .012	≤ .012	≤ .014	≤ .014
			⊒ .5 DC	≤ .591	≤ .010	≤ .010	≤ .012	≤ .012
	Si<5%	GL		≤ .987	≤ .008	≤ .008	≤ .010	≤ .010
	31<3%	GL		≤ .197	≤ .012	≤ .012	≤ .014	≤ .014
			≤ .75 DC	≤ .394	≤ .010	≤ .010	≤ .012	≤ .012
			≤ .75 DC	≤ .591	≤ .008	≤ .008	≤ .010	≤ .010
				≤ .987	≤ .006	≤.006	≤ .008	≤ .008
				≤ .197	≤ .010	≤ .012	≤ .014	≤ .014
				≤ .394	≤ .008	≤ .010	≤ .012	≤ .012
			DC (Slot)	≤ .591	≤ .006	≤ .008	≤ .010	≤ .010
				≤ .987	≤ .004	≤.006	≤.008	≤ .008
Aluminum Alloy				≤ .197	≤ .014	≤ .016	≤ .016	≤ .016
			≤ .25 DC	≤ .394	≤ .012	≤ .014	≤ .014	≤ .014
				≤ .591	≤ .010	≤ .012	≤ .012	≤ .012
				≤ .987	≤ .008	≤ .010	≤ .010	≤ .010
				≤ .197	≤ .014	≤ .014	≤ .016	≤ .016
				≤ .394	≤ .012	≤ .012	≤ .014	≤ .014
		GL	≤ .5 DC	≤ .591	≤ .010	≤ .010	≤ .012	≤ .012
5%	%≤Si≤10%			≤ .987	≤ .008	≤ .008	≤ .010	≤ .010
	Si>10%		≤ .75 DC	≤.197	≤ .012	≤ .012	≤.014	≤ .014
				≤ .394	≤ .010	≤ .010	≤ .012	≤ .012
				≤ .591	≤ .008	≤ .008	≤ .010	≤ .010
				≤ .987	≤ .006	≤.006	≤ .008	≤ .008
				≤ .197	≤ .010	≤ .012	≤ .014	≤ .014
				≤ .394	≤ .008	≤ .010	≤ .012	≤ .012
			DC (Slot)	≤ .591	≤ .006	≤ .008	≤ .010	≤ .010
				≤.987	≤ .004	≤.006	≤ .008	≤ .008
				≤ .197	≤ .004	≤ .005	≤ .005	—
				≤ .394	≤ .004	≤ .005	≤ .005	_
			≤ .25 DC	≤ .591	≤ .004	≤ .005	≤ .005	—
				≤ .987	≤ .004	≤ .005	≤ .005	_
				≤ .197	≤ .004	≤ .005	≤ .005	_
				≤ .394	≤ .004	≤ .005	≤ .005	_
Titopium Alleri			≤ .5 DC	≤ .591	≤ .004	≤ .005	≤ .005	_
Titanium Alloy	_	GLA		≤ .987	_	≤ .004	≤ .004	_
				≤.197	≤ .004	≤ .005	≤ .005	—
			< 75 DO	≤ .394	≤ .004	≤ .005	≤ .005	_
			≤ .75 DC	≤ .591	≤ .004	≤.005	≤ .005	_
				≤ .987	_	≤ .004	≤ .004	_
				≤ .197	≤ .003	≤.003	≤ .003	_
			DC (Slot)	≤ .394	≤ .002	≤.003	≤ .003	_


(Note 1) The above cutting conditions are determined based on high workpiece and machine rigidity, where no vibration occurred. If vibrations occur make adjustments according to the machining conditions.
(Note 2) Note, vibrations may occur in the following conditions.
• When using long tool overhang.
• When the workpiece has poor clamping rigidity or when the machine rigidity or workpiece rigidity is low,vibrations can occur easily, if so, reduce the cutting conditions.

• When pocket machining corner radii.

Ramping / Helical Cutting (Aluminum Alloy)

Ramping

(inch)

Helical Cutting

				(inch)
			Rampir	ng
Туре	DC	RE	RMPX	L *1
	1.250	.031094	20°	2.272
	1.250	.118,.125	19.3°	2.362
	1.500	.031094	14.1º	3.292
	1.500	.118,.125	13.3º	3.498
	2,000	.031094	9.8°	4.788
	2.000	.118,.125	9.1°	5.163
А Туре	2 000	.031094	5.3°	8.915
	3.000	.118,.125	4.9°	9.647
	4.000	.031094	4.2°	11.262
	4.000	.118,.125	3.8°	12.451
	F 000	.031094	2.5°	18.941
	5.000	.118,.125	2.2°	21.527
	1.250	.157, .197	18º	2.471
	1.500	.157, .197	11°	4.131
P Tuno	2.000	.157, .197	8°	5.714
В Туре	3.000	.157, .197	4°	11.483
	4.000	.157, .197	3°	15.322
	5.000	.157, .197	2º	22.995

				(inch)
			Helical Cu	itting
Туре	DC	RE	DH min.	P max.
	1.050	.031094	1.535	.315
	1.250	.118,.125	1.535	.315
	1.500	.031094	2.047	.394
	1.500	.118,.125	2.047	.394
	2.000	.031094	3.031	.551
	2.000	.118,.125	3.031	.472
А Туре	2 000	.031094	5.000	.551
	3.000	.118,.125	5.000	.512
	4 000	.031094	6.969	.669
	4.000	.118,.125	6.969	.591
	5.000	.031094	9.016	.512
	5.000	.118,.125	9.016	.472
	1.250	.157	1.535	.276
	1.250	.197	1.535	.276
	1.500	.157	2.047	.315
		.197	2.047	.315
	2.000	.157	3.031	.433
P Tuno	2.000	.197	3.031	.433
В Туре	3.000	.157	5.000	.433
	3.000	.197	5.000	.433
	4.000	.157	6.969	.472
	4.000	.197	6.969	.472
	5.000	.157	9.016	.433
	5.000	.197	9.016	.433

(Note) The recommended ramping feed is .002 IPT or under.

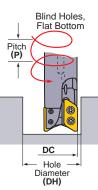
*1 L (Max. Depth of Cut =.591" / tan α). Cutters' moving distance until depth of cut reaches APMX at a maximum ramping angle. Maximum depth of cut A type is .827", B type is .803".

*2 The maximum diameter when machining a blind hole with a flat face using a corner radius of .031" for A type and .157" for B type. Other than that, find with the below formula.

{(cutting edge diameter DC)-(corner radius)-0.3)}x2

*3 The minimum diameter when machining a blind hole with a flat face using a corner radius of .031" for A type and .157" for B type. Other than that, find with the below formula.

{(cutting edge diameter DC)-(corner radius)-(Width of wiper edge BS)-0.1)}x2


- Max		(inch)
Туре	RE	Max. Drilling Depth
	.031094	.197
А Туре	.118, .125	.177
B Type	.157	.157
В Туре	.197	.138

Max. Drilling Depth (Aluminum Alloy)

AXD7000 can be effectively used for pocket machining without the need for a prepared hole.

Helical Cutting

						(DH)	(inch)
				H	elical Cutting (Blin	d Hole, Flat Bottom)	
Туре	DC	RE	BS	DH max. *2	P max.	DH min. *3	P max.
		.031	.079	2.417	.787	2.276	.787
		.063	.047	2.354	.748	2.276	.748
	1.250"	.079	.031	2.323	.709	2.276	.748
		.094	.016	2.291	.709	2.276	.748
		.118	.031	2.244	.669	2.193	.669
		.125	.024	2.228	.669	2.193	.669
	1.500"	.031	.079	2.902	.787	2.776	.787
		.063	.047	2.839	.748	2.776	.748
		.079	.031	2.807	.709	2.776	.748
		.094	.016	2.776	.709	2.776	.748
		.118 .125	.031 .024	2.728 2.713	.669 .669	2.693 2.693	.669 .669
		.031	.024	3.902	.787	3.768	.787
		.063	.079	3.839	.748	3.768	.748
		.063	.047	3.807	.748	3.768	.748
	2.000"	.079	.016	3.776	.709	3.768	.748
		.118	.031	3.728	.669	3.768	.669
		.125	.024	3.713	.669	3.687	.669
А Туре		.031	.079	5.902	.787	5.768	.787
		.063	.047	5.839	.748	5.768	.748
		.079	.047	5.807	.709	5.768	.748
	3.000"	.094	.016	5.776	.709	5.768	.748
		.118	.031	5.728	.669	5.686	.669
		.125	.024	5.713	.669	5.686	.669
		.031	.079	7.902	.787	7.768	.787
		.063	.047	7.839	.748	7.768	.748
		.079	.031	7.807	.709	7.768	.748
	4.000"	.094	.016	7.776	.709	7.768	.748
		.118	.031	7.728	.669	7.686	.669
		.125	.024	7.713	.669	7.686	.669
		.031	.079	9.902	.669	9.767	.630
		.063	.047	9.839	.630	9.767	.630
	5 000"	.079	.031	9.807	.630	9.767	.630
	5.000"	.094	.016	9.776	.630	9.767	.630
		.118	.031	9.728	.551	9.685	.551
		.125	.024	9.713	.551	9.685	.551
	1.250"	.157	.035	2.165	.630	2.106	.630
	1.250	.197	.016	2.087	.591	2.070	.591
	1.500"	.157	.035	2.650	.630	2.605	.630
	1.500	.197	.016	2.571	.591	2.569	.591
	2.000"	.157	.035	3.650	.630	3.599	.630
В Туре	2.000	.197	.016	3.571	.591	3.563	.591
D iype	3.000"	.157	.035	5.650	.551	5.597	.551
	5.000	.197	.016	5.571	.551	5.561	.551
	4.000"	.157	.035	7.650	.591	7.597	.591
	7.000	.197	.016	7.571	.591	7.561	.591
	5.000"	.157	.035	9.650	.472	9.597	.472
	0.000	.197	.016	9.571	.472	9.560	.472

(Note) The recommended ramping feed is .002 IPT or under.

*1 L (Max. Depth of Cut = .591" / tan α). Cutters' moving distance until depth of cut reaches APMX at a maximum ramping angle. Maximum depth of cut A type is .827", B type is .803".

*2 The maximum diameter when machining a blind hole with a flat face using a corner radius of .031" for A type and .157" for B type. Other than that, find with the below formula. {(cutting edge diameter DC)-(corner radius)-0.3)}x2

*3 The minimum diameter when machining a blind hole with a flat face using a corner radius of .031" for A type and .157" for B type. Other than that, find with the below formula. {(cutting edge diameter DC)-(corner radius)-(Width of wiper edge BS)-0.1)}×2

Operation Guidance

Only use the inserts and parts provided by Mitsubishi Materials with this tool. Use of the correct insert clamp screws is especially important to ensure overall tool safety. Do not use damaged or worn clamp screws.

Туре	Αλ	(04000	A	XD7000	•
Cutting Edge Diameter DC(inch)	ø.787"	ø1.000"–ø5.000"	ø1.250"	ø1.500"-ø5.000"	
Clamp Screw Number	TS3SBS	TS3SB	TS4SB	TS4SBL	
Overall Length L(inch)	.256	.315	.353	.413	- L
Clamp Torque (lbf-in)	13	13	31	31	

When tightening the clamp screws, follow the order in Figure 1.

The maximum allowable spindle speeds are shown in Table 1. Ensure that the cutter operates under the maximum allowable spindle speed.

The maximum allowable spindle speeds for safety purposes are determined in accordance with ISO15641 (Milling Cutters for high speed machining-Safety requirements).

(Table 1) Maximum allowable spindle speed

AXD4000

Cutting Edge Diameter DC (inch)	ø.787"	ø1.000"	ø1.250"	ø1.500"	ø2.000"	ø2.500"	ø3.000"	ø4.000"	ø5.000"
Culling Edge Diameter DC(Inch)	Ø.101	Ø1.000	Ø1.250	Ø1.500	Ø2.000	ØZ.500	Ø3.000	Ø4.000	Ø5.000
Max. Allowable Spindle Speed (min-1)	15000	49000	48000	41000	35000	30000	27000	23000	20000

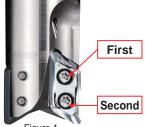
AXD7000

Cutting Edge Diameter DC (inch)	ø1.250"	ø1.500"	ø2.000"	ø2.500"	ø3.000"	ø4.000"	ø5.000"
Max. Allowable Spindle Speed (min ⁻¹)	41000	36000	30000	25000	23000	19000	16000

Even when operating under the maximum allowable spindle speed, if the spindle speed is equal to or higher than the values shown in table 2, it is recommended that the balance quality (with the arbor or milling chuck) conforms to G6.3 or better based on ISO1940. It is also recommended to replace the clamp screws with new ones when changing inserts. Furthermore, ensure to use machines that are provided with safety measures in case of cutter breakage. * The balance quality of the holder (without inserts and clamp screws) is G6.3 or better at 10000min⁻¹.

(Table 2) Maximum spindle speed when balancing with the arbor or milling chuck has not been achieved AXD4000

Cutting Edge Diameter DC (inch)	ø.787"	ø1.000"	ø1.250"	ø1.500"	ø2.000"	ø2.500"	ø3.000"	ø4.000"	ø5.000"
Max. Spindle Speed (min ⁻¹)	15000	12000	9500	7600	6000	4800	3800	3000	2400


AXD7000

Cutting Edge Diameter DC(inch)	ø1.250"	ø1.500"	ø2.000"	ø2.500"	ø3.000"	ø4.000"	ø5.000"
Max. Spindle Speed (min-1)	9500	7600	6000	4800	3800	3000	2400

When setting the spindle speed, take into consideration the maximum allowable spindle speed of the arbor or milling chuck.

Use the specified set bolt when using the arbor type with through coolant.

The inserts have sharp cutting edges and handling them with bare hands may cause injuries. Always wear safety gloves when handling the indexable inserts.

