Recommended Cutting Conditions

Cutting Speed

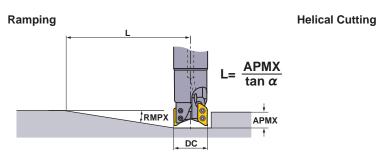
	Work Mater	ial	Grade	Breaker	vc (SFM)
Ρ	Mild Steel	≤180HB	MP6120	GM	655(490-720)
	Carbon Steel Alloy Steel	180—280HB	MP6120	GM	655(490-720)
N		Si<5%	TF15 LC15TF	GL	3280 (655—9840)
	Aluminum Alloy	31<3%	TF15 MP9120	GM	3280 (655—9840)
		5%≤Si≤10% Si>10%	MP9120	GM	3280 (655—9840)
S	Titanium Alloy	_	MP9120	GM	130 (100—195)

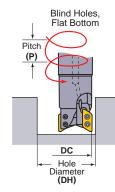
(inch)

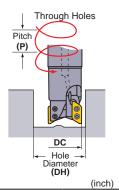
Feed per Tooth

	Feed per Tooth										(inch)	
								Feed per	Tooth (IPT)			
	Work Mate	rial	Breaker	ae	ар	Cutting Edge Diameter DC						
						—	1.000"	1.250"	1.500"	2.000"-3.000"	4.000",5.000"	
_						20mm	25,28mm	32,35mm	40mm		100,125mm	
Ρ					≤ .197	≤ .002	≤ .006	≤ .006	≤ .007	≤ .007	≤ .007	
				≤ .25 DC	≤ .394	≤ .002	≤ .005	≤ .005	≤ .006	≤ .006	≤ .006	
					≤ .571	≤ .002	≤ .004	≤.004	≤ .005	≤ .005	_	
					≤ .197	≤ .002	≤ .005	≤.006	≤ .006	≤ .007	≤ .007	
	Mild Steel	≤180HB	GM	≤ .5 DC	≤ .394	—	≤ .004	≤ .005	≤ .005	≤ .006	≤ .006	
					≤ .571	_	≤ .003	≤.004	≤ .004	≤ .005	_	
				< 75 DC	≤ .197	≤ .002	≤ .005	≤.005	≤ .006	≤.006	≤.006	
				≤ .75 DC	≤ .394	_	≤ .004	≤.004	≤ .005	≤ .005	≤ .005	
				DC (Slot)	≤ .197	≤ .002	≤ .004	≤.005	≤ .005	≤ .006	≤ .006	
		1			≤ .197	≤ .002	≤.006	≤.006	≤ .007	≤ .007	≤ .007	
				≤ .25 DC	≤ .394	≤ .002	≤.005	≤.005	≤ .006	≤ .006	≤.006	
					≤ .571	≤ .002	≤.004	≤.004	≤ .005	≤ .005	_	
					≤ .197	≤ .002	≤.005	≤.006	≤ .006	≤ .007	≤ .007	
	Carbon Steel Alloy Steel	180-280HB	GM	≤ .5 DC	≤ .394	_	≤ .004	≤.005	≤ .005	≤ .006	≤ .006	
	Alloy Steel				≤ .571	_	≤.003	≤.004	≤ .004	≤ .005	_	
					≤ .197	≤ .002	≤ .005	≤.005	≤.006	≤ .006	≤.006	
				≤ .75 DC	≤ .394	_	≤.004	≤.004	≤.005	≤ .005	≤.005	
				DC (Slot)	≤ .197	≤.002	≤.004	≤.005	≤.005	≤.006	≤.006	

(Note 1) The above cutting conditions are determined based on high workpiece and machine rigidity, where no vibration occurred. If vibrations occur make adjustments according to the machining conditions.
(Note 2) Note, vibrations may occur in the following conditions.
When using long tool overhang.
When pocket machining corner radii.
When the workpiece has poor clamping rigidity or when the machine rigidity or workpiece rigidity is low, vibrations can occur easily, if so, reduce cutting conditions such as width and depth of cut and feed per tooth.


(inch)


								Feed per	Tooth (IPT)		(inch)
	Mort Motor	ial	Ducalian	22	on		C	utting Edge			
	Work Mater	lai	Breaker	ae	ар		1.000"	1.250"	1.500"		4.000",5.000"
						20mm	25,28mm	32,35mm	40mm		100,125mm
Ν		1			≤ .197	≤.002	≤ .010	≤.010	≤ .010	≤ .010	≤.010
				≤ .25 DC	≤ .394	≤.002	≤ .008	≤.008	≤ .008	≤.008	≤.008
					≤ .571	≤.002	≤.006	≤.006	≤ .006	≤.006	≤.006
					≤ .197	≤.002	≤.010	≤.010	≤ .010	≤.010	≤.010
				≤.5 DC	≤ .394	_	≤.008	≤.008	≤ .008	≤.008	≤.008
		Si<5%	GL		≤ .571	_	≤.006	≤.006	≤ .006	≤.006	≤.006
					≤ .197	≤ .002	≤ .010	≤ .010	≤ .010	≤ .010	≤ .010
				≤ .75 DC	≤ .394	_	≤.008	≤.008	≤ .008	≤.008	≤.008
					≤ .571	_	≤.006	≤.006	≤ .006	≤.006	≤.006
				DC (Slot)	≤ .197	≤ .002	≤ .010	≤ .010	≤ .010	≤ .010	≤ .010
					≤ .197	≤ .002	≤ .014	≤ .014	≤ .016	≤ .016	≤.016
				≤ .25 DC	≤ .394	≤ .002	≤ .012	≤ .012	≤ .014	≤ .014	≤ .014
					≤ .571	≤ .002	≤ .010	≤ .010	≤ .012	≤ .012	≤ .012
					≤ .197	≤ .002	≤ .014	≤ .014	≤ .014	≤ .016	≤ .016
		Si<5%	GM	≤.5 DC	≤ .394	_	≤ .012	≤ .012	≤ .012	≤ .014	≤ .014
	Aluminum Alloy	51<5%	GW		≤ .571	_	≤ .008	≤ .010	≤ .010	≤ .012	≤ .012
					≤ .197	≤ .002	≤ .012	≤ .012	≤ .012	≤ .014	≤ .014
				≤ .75 DC	≤ .394	—	≤ .010	≤ .010	≤ .010	≤ .012	≤ .012
					≤ .571	—	≤ .008	≤ .008	≤ .008	≤ .010	≤ .010
				DC (Slot)	≤ .197	≤ .002	≤ .010	≤ .010	≤ .012	≤ .014	≤ .014
					≤ .197	≤ .002	≤ .014	≤ .014	≤ .016	≤ .016	≤ .016
				≤ .25 DC	≤ .394	≤ .002	≤ .012	≤ .012	≤ .014	≤ .014	≤ .014
					≤ .571	≤ .002	≤ .010	≤ .010	≤ .012	≤ .012	≤ .012
					≤ .197	≤ .002	≤ .014	≤ .014	≤ .014	≤ .016	≤ .016
		5%≤Si≤10%	GM	≤.5 DC	≤ .394	_	≤ .012	≤ .012	≤ .012	≤ .014	≤ .014
		Si>10%			≤ .571	_	≤ .008	≤ .010	≤ .010	≤ .012	≤ .012
					≤ .197	≤ .002	≤ .012	≤ .012	≤ .012	≤ .014	≤ .014
				≤ .75 DC	≤ .394	_	≤ .010	≤ .010	≤ .010	≤ .012	≤ .012
					≤ .571	_	≤ .008	≤ .008	≤ .008	≤ .010	≤ .010
				DC (Slot)	≤ .197	≤ .002	≤ .010	≤ .010	≤ .012	≤ .014	≤ .014
S					≤ .197	≤ .002	≤ .004	≤.004	≤ .004	≤ .004	≤ .004
				≤ .25 DC	≤ .394	≤ .002	≤ .004	≤.004	≤ .004	≤ .004	≤ .004
					≤ .571	≤ .002	≤ .004	≤.004	≤ .004	≤.004	≤.004
					≤ .197	≤ .002	≤.003	≤.004	≤ .004	≤.004	≤ .004
	Titanium Alloy	_	GM	≤.5 DC	≤ .394	-	≤.003	≤.004	≤ .004	≤.004	≤.004
					≤ .571	_	≤.003	≤.004	≤ .004	≤ .004	≤ .004
					≤ .197	≤ .002	≤ .002	≤.003	≤ .004	≤ .004	≤ .004
				≤ .75 DC	≤ .394	_	≤ .002	≤.003	≤ .004	≤ .004	≤ .004
					≤ .571	_	≤ .002	≤.003	≤ .004	≤.004	≤ .004
				DC (Slot)	≤ .197	≤ .002	≤ .002	≤.002	≤ .002	≤ .002	≤ .002


(Note 1) The above cutting conditions are determined based on high workpiece and machine rigidity, where no vibration occurred. If vibrations occur make adjustments according to the machining conditions.
 (Note 2) Note, vibrations may occur in the following conditions.

When using long tool overhang.
When pocket machining corner radii.
When the workpiece has poor clamping rigidity or when the machine rigidity or workpiece rigidity is low, vibrations can occur easily, if so, reduce cutting conditions such as width and depth of cut and feed per tooth.

Ramping / Helical Cutting (Aluminum Alloy)

			Ramp	ping	Helical	Cutting (Blin	d Hole, Flat Botto	om)	Helical Cutting	(Through Hole)
Туре	DC	RE	RMPX	*1 L	DH max.	P max.	DH min.	P max.	DH min.	P max.
	707	.016—.047	20.7°	1.65	1.524 *2	.551	1.421	.551	.866	.079
	.787 [20mm]	.063—.094	19.9°	1.69	1.429 * 3	.512	1.362	.512	.866	.079
	[201111]	.118—.125	18.9°	1.81	1.319 *4	.472	1.311	.472	.866	.039
		.016—.047	22.6°	1.50	1.949 <mark>*2</mark>	.551	1.832	.551	1.267	.315
	1.000	.063094	22.1°	1.54	1.854 * 3	.512	1.766	.512	1.267	.315
		.118—.125	20.7°	1.65	1.728 *4	.472	1.707	.472	1.267	.315
	4 4 0 0	.016047	19.2°	1.77	2.154 * 2	.551	2.047	.551	1.417	.315
	1.102 [28mm]	.063—.094	18.5°	1.85	2.059 * 3	.512	1.984	.512	1.417	.315
		.118—.125	16.7°	2.05	1.949 *4	.472	1.925	.472	1.417	.276
		.016—.047	15.6°	2.20	2.449 * 2	.551	2.331	.551	1.762	.433
	1.250	.063094	14.9°	2.32	2.354 * 3	.512	2.264	.512	1.762	.394
		.118—.125	14.0°	2.48	2.244 *4	.472	2.203	.472	1.762	.394
	4.070	.016—.047	13.4°	2.60	2.705 *2	.551	2.591	.551	1.969	.433
	1.378 [35mm]	.063—.094	12.7°	2.71	2.610 * 3	.512	2.531	.512	1.969	.394
		.118—.125	11.8°	2.95	2.500 *4	.472	2.472	.472	1.969	.354
	1.500	.016—.047	13.0°	2.68	2.933 *2	.551	2.827	.551	2.262	.512
А Туре		.063094	12.3°	2.83	2.839 * 3	.512	2.760	.512	2.262	.512
		.118—.125	11.6°	2.99	2.728 *4	.472	2.701	.472	2.262	.472
		.016—.047	8.7°	4.02	3.933 * 2	.551	3.827	.551	3.258	.551
	2.000	.063—.094	8.2°	4.25	3.839 * 3	.512	3.757	.512	3.257	.512
		.118—.125	7.6°	4.61	3.728 *4	.472	3.696	.472	3.257	.472
		.016—.047	6.6°	5.28	4.933 *2	.551	4.824	.551	4.259	.551
	2.500	.063—.094	6.1°	5.75	4.839 *3	.512	4.756	.512	4.259	.512
		.118—.125	5.7°	6.14	4.728 *4	.472	4.695	.472	4.258	.472
		.016—.047	5.3°	6.61	5.933 * 2	.551	5.824	.551	5.260	.551
	3.000	.063—.094	4.9°	7.13	5.839 * 3	.512	5.756	.512	5.260	.512
		.118—.125	4.5°	7.76	5.728 *4	.472	5.746	.472	5.259	.472
		.016—.047	3.8°	9.21	7.933 *2	.551	7.824	.551	7.261	.551
	4.000	.063094	3.5°	10.00	7.839 * 3	.512	7.755	.512	7.261	.512
		.118—.125	3.2°	10.94	7.728 *4	.472	7.694	.472	7.260	.472
		.016—.047	2.9°	12.05	9.933 *2	.551	9.823	.551	9.261	.551
	5.000	.063094	2.7°	12.95	9.839 * 3	.512	9.755	.512	9.261	.512
		.118—.125	2.5°	14.02	9.728 *4	.472	9.693	.472	9.260	.472

										(inch)
			Ramp	bing	Helical	Cutting (Blin	d Hole, Flat Botte	om)	Helical Cutting	(Through Hole)
Туре	DC	RE	RMPX	*1 L	DH max.	P max.	DH min.	P max.	DH min.	P max.
	.787	.157	17.5°	1.850	1.240	.394	1.252	.394	.866	.039
	[20mm]	.197	16.6°	2.795	1.161	.236	1.224	.276	.866	.039
	1.000	.157	17.9°	1.81	1.665	.394	1.635	.394	1.269	.236
	1.000	.197	14.7°	2.24	1.587	.354	1.596	.354	1.269	.197
	1.102	.157	14.1°	2.323	1.870	.394	1.858	.394	1.417	.236
	[28mm]	.197	13°	2.559	1.791	.354	1.827	.354	1.417	.197
	1.250	.157	12.9°	2.56	2.165	.394	2.130	.394	1.762	.354
	1.200	.197	12.2°	2.72	2.087	.354	2.090	.354	1.762	.315
	1.378	.157	10.8°	3.071	2.421	.394	2.402	.394	1.969	.315
	[35mm]	.197	10.2°	3.268	2.343	.354	2.370	.354	1.969	.315
	1.500	.157	10.7°	3.11	2.650	.394	2.622	.394	2.261	.394
В Туре	1.500	.197	10.1°	3.31	2.571	.354	2.583	.354	2.261	.354
	2.000	.157	6.9°	4.84	3.650	.394	3.621	.394	3.257	.394
	2.000	.197	6.5°	5.12	3.571	.354	3.580	.354	3.256	.354
	2.500	.157	5.1°	6.54	4.650	.394	4.600	.394	4.258	.394
	2.500	.197	4.8°	6.97	4.571	.354	4.578	.354	4.257	.354
	3.000	.157	4.1°	8.15	5.650	.394	5.619	.394	5.258	.394
	3.000	.197	3.8°	8.78	5.571	.354	5.578	.354	5.258	.354
	4.000	.157	2.9°	11.54	7.650	.394	7.618	.394	7.259	.394
	4.000	.197	2.7°	12.36	7.571	.354	7.577	.354	7.258	.354
	5.000	.157	2.2°	15.20	9.650	.394	9.618	.394	9.260	.394
	5.000	.197	2.1°	15.91	9.571	.354	9.577	.354	9.259	.354

The recommended ramping or helical cutting feed is .002IPT or less.
*1. Using the maximum ramping angle, the distance to reach the maximum depth of cut is as follows: L=(maximum depth of cut APMX / tan α). Maximum depth of cut A type is .610", B type is .583".
*2. The maximum diameter when machining a blind hole with a flat face using a corner radius of .047".
*3. The maximum diameter when machining a blind hole with a flat face using a corner radius of .094".
*4. The maximum diameter when machining a blind hole with a flat face using a corner radius of .094".
*5. The maximum diameter when machining a blind hole with a flat face using a corner radius of .125". For other corner radius, use to following formula. {(cutting edge diameter DC) - (corner radius RE) - β} ×2

DC β .010" 1.0-1.25" 1.5-5.0" .018"

Max. Drilling Depth (Aluminum Alloy)

					(IIICII)					
		Max. Drilling Depth								
Туре	RE	φ.787"	φ1.000"	φ1.250"	φ1.500"—φ5.000"					
	.016047	.209	.205	.205	.209					
А Туре	.063094	.189	.181	.185	.189					
	.118125	.169	.146	.165	.173					
В Туре	.157	.146	.106	.142	.150					
втуре	.197	.134	.091	.130	.138					

AXD4000 can be effectively used for pocket machining without the need for a prepared hole.

. .

The recommended drilling feed is .002 IPT or less.

(inch)

Operation Guidance

Only use the inserts and parts provided by Mitsubishi Materials with this tool. Use of the correct insert clamp screws is especially important to ensure overall tool safety. Do not use damaged or worn clamp screws.

Туре	Αλ	(04000	A	XD7000	•
Cutting Edge Diameter DC(inch)	ø.787"	ø1.000"–ø5.000"	ø1.250"	ø1.500"-ø5.000"	
Clamp Screw Number	TS3SBS	TS3SB	TS4SB	TS4SBL	
Overall Length L(inch)	.256	.315	.353	.413	- L
Clamp Torque (lbf-in)	13	13	31	31	

When tightening the clamp screws, follow the order in Figure 1.

The maximum allowable spindle speeds are shown in Table 1. Ensure that the cutter operates under the maximum allowable spindle speed.

The maximum allowable spindle speeds for safety purposes are determined in accordance with ISO15641 (Milling Cutters for high speed machining-Safety requirements).

(Table 1) Maximum allowable spindle speed

AXD4000

Cutting Edge Diameter DC (inch)	ø.787"	ø1.000"	ø1.250"	ø1.500"	ø2.000"	ø2.500"	ø3.000"	ø4.000"	ø5.000"
Culling Euge Diameter DC(mcn)	0.101	000.10	Ø1.230	01.500	ØZ.000	ØZ.300	03.000	04.000	05.000
Max. Allowable Spindle Speed (min-1)	15000	49000	48000	41000	35000	30000	27000	23000	20000

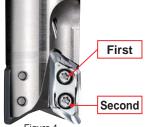
AXD7000

Cutting Edge Diameter DC (inch)	ø1.250"	ø1.500"	ø2.000"	ø2.500"	ø3.000"	ø4.000"	ø5.000"
Max. Allowable Spindle Speed (min ⁻¹)	41000	36000	30000	25000	23000	19000	16000

Even when operating under the maximum allowable spindle speed, if the spindle speed is equal to or higher than the values shown in table 2, it is recommended that the balance quality (with the arbor or milling chuck) conforms to G6.3 or better based on ISO1940. It is also recommended to replace the clamp screws with new ones when changing inserts. Furthermore, ensure to use machines that are provided with safety measures in case of cutter breakage. * The balance quality of the holder (without inserts and clamp screws) is G6.3 or better at 10000min⁻¹.

(Table 2) Maximum spindle speed when balancing with the arbor or milling chuck has not been achieved AXD4000

Cutting Edge Diameter DC (inch)	ø.787"	ø1.000"	ø1.250"	ø1.500"	ø2.000"	ø2.500"	ø3.000"	ø4.000"	ø5.000"
Max. Spindle Speed (min ⁻¹)	15000	12000	9500	7600	6000	4800	3800	3000	2400


AXD7000

Cutting Edge Diameter DC(inch)	ø1.250"	ø1.500"	ø2.000"	ø2.500"	ø3.000"	ø4.000"	ø5.000"
Max. Spindle Speed (min-1)	9500	7600	6000	4800	3800	3000	2400

When setting the spindle speed, take into consideration the maximum allowable spindle speed of the arbor or milling chuck.

Use the specified set bolt when using the arbor type with through coolant.

The inserts have sharp cutting edges and handling them with bare hands may cause injuries. Always wear safety gloves when handling the indexable inserts.

