Shoulder milling (Slotting)

Work material	Carbon steel, Alloy steel, Mild Steel, Pre-hardened steel							Austenitic steinless steel, Titanium alloy, Hardened stainless steel, Cobaly chomium alloy, Ferritic and Martensitic stainless steels						
	AISI 1010, AISI 1035, AISI 1050, ASTM 283, AISI H13, AISI 4140, AISI P21						AISI 304, AISI 316, AISI S17400, AISI S17700, AISI 430, AISI 420							
RE (inch)	α≤15°		α>15°		Depth of cut	Pick feed	α≤15°		α>15°		Depth of cut	Pick feed		
	Revolution (min ⁻¹)	Feed rate (IPM)	Revolution (min ⁻¹)	Feed rate (IPM)	ap (inch)	pf (inch)	Revolution (min ⁻¹)	Feed rate (IPM)	Revolution (min ⁻¹)	Feed rate (IPM)	ap (inch)	pf (inch)		
.0625	30000	283.5	20000	118.1	.0098	.0313	22500	189.0	15000	74.8	.0098	.0313		
.0938	20000	220.5	13400	102.4	.0165	.0469	15000	137.8	10000	59.1	.0165	.0469		
.1250	15000	177.2	10000	82.7	.0197	.0626	11200	126.0	7500	55.1	.0197	.0626		
.1563	12000	169.3	8000	74.8	.0315	.0781	9000	126.0	6000	55.1	.0315	.0781		
.1875	10000	161.4	6700	70.9	.0394	.0937	7500	118.1	5000	51.2	.0394	.0937		
.2500	7600	149.6	5000	70.9	.0472	.125	5600	118.1	3800	51.2	.0472	.125		
Depth of cut	≤pf ≤ap													

))(ada	Copper, Copper alloys							Heat resistant alloy						
material								Inconel718 etc.						
PE	α≤15°		α>15°		Depth of cut	epth of cut Pick feed		α≤15°		α>15°		Pick feed		
(inch)	Revolution (min ⁻¹)	Feed rate (IPM)	Revolution (min ⁻¹)	Feed rate (IPM)	ap (inch)	pf (inch)	Revolution (min ⁻¹)	Feed rate (IPM)	Revolution (min ⁻¹)	Feed rate (IPM)	ap (inch)	pf (inch)		
.0625	36000	338.6	24000	141.7	.0098	.0313	6000	25.2	4000	13.4	.0051	.0313		
.0938	24000	263.8	16000	122.0	.0165	.0469	4000	20.9	2700	9.8	.0083	.0469		
.1250	18000	212.6	12000	98.4	.0197	.0626	3000	19.7	2000	8.3	.0098	.0626		
.1563	14000	196.9	9600	90.6	.0315	.0781	2400	16.9	1600	7.5	.0157	.0781		
.1875	12000	192.9	8000	82.7	.0394	.0937	2000	16.5	1300	7.1	.0197	.0937		
.2500	9100	181.1	6000	86.6	.0472	.125	1500	13.8	1000	5.9	.0236	.0125		
Depth of cut	≤pf ≤ap													

1) SMART MIRACLE coating has reduced electric conductivity; therefore an external contact type (electric transmitted) tool setter may not work. When measuring the tool length, please use an internal contact type (non-electricity type) tool setter or a laser type tool setter.

2) When cutting austenitic stainless steels, the use of water-soluble cutting fluid is especially effective.

3) If the depth of cut is smaller than this table, feed rate can be increased.

4) The irregular helix flute end mill has a larger effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece installation is very low, then vibration can occur. In this case, please reduce the revolution and feed rate proportionately, or set a lower depth of cut.

5) α is the inclination of the machined surface.

- End mill RE