Identification(Shoulder Milling)

Reduce the cutting parameters by the coefficient values shown according to the length of overhang. For long edge and oversize types heads refer to their specific recommended conditions.

Workpiece Material	Carbon Steels, Alloy Steels, Mild Steels, Copper, Copper Alloys			Pre-hardened S Alloy Steels, Allo	teels, Carbon Ste oy Tool Steels	els,	Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels, Titanium Alloys			
L/D	Revolution Feed per Tooth Wi n (min-1) (IPT)		Width of Cut ae	Revolution n (min ⁻¹)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min ⁻¹)	Feed per Tooth fz (IPT)	Width of Cut ae	
2	100%	100%	100%	100%	100%	100%	100%	100%	100%	
3	100%	100%	100%	100%	100%	100%	100%	100%	100%	
4	80%	90%	70%	80%	90%	70%	80%	90%	70%	
5	60%	80%	40%	60%	80%	40%	60%	80%	40%	
6	50%	70%	30%	50%	70%	30%	50%	70%	30%	
7	40%	70%	20%	40%	70%	20%	30%	60%	20%	
8	40%	60%	10%	40%	60%	10%	30%	50%	10%	
9	30%	60%	10%	30%	60%	10%	20%	50%	10%	

Workpiece Material	Precipitation Ha Cobalt Chromiu	rdening Stainless m Alloys	Steels,	Heat Resistant Alloys Inconel718			
L/D	Revolution n (min ⁻¹)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min ⁻¹)	Feed per Tooth fz (IPT)	Width of Cut ae	
2	100%	100%	100%	100%	100%	100%	
3	100%	100%	100%	100%	100%	100%	
4	80%	90%	70%	80%	90%	70%	
5	60%	80%	40%	60%	80%	40%	
6	50%	70%	30%	50%	70%	30%	
7	30%	60%	20%	30%	60%	20%	
8	30%	50%	10%	30%	50%	10%	
9	20%	50%	10%	20%	50%	10%	

(inch)

Recommended Cutting Conditions

Chamfer Milling (Hole Circumference)

Workpiece Material		Carbon Ste	els, Alloy Ste	eels, Gray Ca	ast Irons	Alloy Tool Steels, Carbon Steels, Alloy Steels, Pre-hardened Steels				Austenitic Stainless Steels, Titanium Alloys			
DC (mm) (inch)		Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae
<u> </u>	.3750	1300	6.2	.071	.071	1300	4.7	.071	.071	1000	3.6	.071	.071
10	.3937	1300	6.2	.071	.071	1300	4.7	.071	.071	970	3.5	.071	.071
12	.4724	1100	5.3	.085	.085	1100	4.0	.085	.085	810	2.9	.085	.085
	.5000	990	4.8	.085	.085	990	3.6	.085	.085	760	2.7	.085	.085
	.6250	790	3.8	.094	.094	790	2.8	.094	.094	610	2.2	.094	.094
16	.6299	790	3.8	.094	.094	790	2.8	.094	.094	610	2.2	.094	.094
	.7500	660	3.2	.102	.102	660	2.4	.102	.102	510	1.8	.102	.102
20	.7874	630	3.0	.102	.102	630	2.3	.102	.102	490	1.8	.102	.102
Depth	of Cut	ap											

Workpiece Material		Hardenned	Steels (40-5	5HRC)		Heat Resistant Alloys				
						Inconel718				
DC		Revolution n	Feed Rate	Depth of Cut	Width of Cut	Revolution n	Feed Rate vf	Depth of Cut	Width of Cut	
(mm) (inch)		(min-1)	(IPM)	ap	ae	(min-1)	(IPM)	ap	ae	
	.3750	1000	2.4	.071	.071	1000	4.8	.071	.071	
10	.3937	970	2.3	.071	.071	970	4.7	.071	.071	
12	.4724	810	1.9	.085	.085	810	3.9	.085	.085	
	.5000	760	1.8	.085	.085	760	3.6	.085	.085	
	.6250	610	1.5	.094	.094	610	2.9	.094	.094	
16	.6299	610	1.5	.094	.094	610	2.9	.094	.094	
	.7500	510	1.2	.102	.102	510	2.4	.102	.102	
20	.7874	490	1.2	.102	.102	490	2.4	.102	.102	
Depth of Cut		ap								

Note 1) Vibration may occur if the rigidity of machine or workpiece material is low.

In this case, please reduce the revolution and the feed rate proportionately.

Note 2) For stainless steels, titanium alloys and heat resistant alloys, the use of water-soluble coolant is effective.

(inch)

Recommended Cutting Conditions

Chamfer Milling (Shape Circumference)

Workpiece Material		Carbon Steels, Alloy Steels, Gray Cast Irons			Alloy Tool Steels, Carbon Steels, Alloy Steels, Pre-hardened Steels			Austenitic Stainless Steels, Titanium Alloys		
DC (in ch)		Revolution n	Feed Rate	Depth of Cut	Revolution n	Feed Rate	Depth of Cut	Revolution n	Feed Rate	Depth of Cut
(11111)	3750	(min-1) 3400	(IPIM) 20.4	070	(min-1) 2300	(IPM) 12.4	070	(min-1) 2000		070
10	3937	3200	10.7	079	2200	11.4	079	1900	9.0 9.1	079
12	4724	2700	16.2	.073	1900	10.3	.073	1600	7.7	.073
	.5000	2500	15.0	094	1800	9.7	094	1500	7.2	094
	.6250	2000	12.0	.107	1400	7.6	.107	1200	5.8	.107
16	.6299	2000	12.0	.107	1400	7.6	.107	1200	5.8	.107
	.7500	1700	10.2	.126	1200	6.5	.126	990	4.8	.126
20	.7874	1600	9.6	.126	1100	5.9	.126	950	4.6	.126
Depth of Cut		ap								

(inch)

Workpiece Material		Hardenned Ste	els (40-55HRC)		Heat Resistant Alloys				
					Inconel718				
DC		Revolution n	Feed Rate vf	Depth of Cut	Revolution n	Feed Rate vf	Depth of Cut		
(mm)	(inch)	(min-1)	(IPM)	ap	(min-1)	(IPM)	ap		
	.3750	1700	6.1	.079	1000	4.8	.079		
10	.3937	1600	5.8	.079	970	4.7	.079		
12	.4724	1300	4.7	.094	810	3.9	.094		
	.5000	1300	4.7	.094	760	3.6	.094		
	.6250	1000	3.6	.107	610	2.9	.107		
16	.6299	1000	3.6	.107	610	2.9	.107		
	.7500	840	3.0	.126	510	2.4	.126		
20	.7874	800	2.9	.126	490	2.4	.126		
Depth of Cut		ap							

Note 1) Vibration may occur if the rigidity of machine or workpiece material is low.

In this case, please reduce the revolution and the feed rate proportionately.

Note 2) For stainless steels, titanium alloys and heat resistant alloys, the use of water-soluble coolant is effective.